skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Antonelli, Lucio A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract How astrophysical systems translate the kinetic energy of bulk motion into the acceleration of particles to very high energies is a pressing question. SS 433 is a microquasar that emits TeVγ-rays indicating the presence of high-energy particles. A region of hard X-ray emission in the eastern lobe of SS 433 was recently identified as an acceleration site. We observed this region with the Imaging X-ray Polarimetry Explorer and measured a polarization degree in the range 38%–77%. The high polarization degree indicates the magnetic field has a well-ordered component if the X-rays are due to synchrotron emission. The polarization angle is in the range −12° to +10° (east of north), which indicates that the magnetic field is parallel to the jet. Magnetic fields parallel to the bulk flow have also been found in supernova remnants and the jets of powerful radio galaxies. This may be caused by interaction of the flow with the ambient medium. 
    more » « less
  2. Abstract We present polarization measurements in the 2–8 keV band from blazar 1ES 0229+200, the first extreme high synchrotron peaked source to be observed by the Imaging X-ray Polarimetry Explorer (IXPE). Combining two exposures separated by about two weeks, we find the degree of polarization to be ΠX= 17.9% ± 2.8% at an electric-vector position angleψX= 25.°0 ± 4.°6 using a spectro-polarimetric fit from joint IXPE and XMM-Newton observations. There is no evidence for the polarization degree or angle varying significantly with energy or time on both short timescales (hours) or longer timescales (days). The contemporaneous polarization degree at optical wavelengths was >7× lower, making 1ES 0229+200 the most strongly chromatic blazar yet observed. This high X-ray polarization compared to the optical provides further support that X-ray emission in high-peaked blazars originates in shock-accelerated, energy-stratified electron populations, but is in tension with many recent modeling efforts attempting to reproduce the spectral energy distribution of 1ES 0229+200, which attribute the extremely high energy synchrotron and Compton peaks to Fermi acceleration in the vicinity of strongly turbulent magnetic fields. 
    more » « less
  3. Aims.We aim to probe the magnetic field geometry and particle acceleration mechanism in the relativistic jets of supermassive black holes. Methods.We conducted a polarimetry campaign from radio to X-ray wavelengths of the high-synchrotron-peak (HSP) blazar Mrk 421, including Imaging X-ray Polarimetry Explorer (IXPE) measurements from 2022 December 6–8. During the IXPE observation, we also monitored Mrk 421 usingSwift-XRT and obtained a single observation withXMM-Newtonto improve the X-ray spectral analysis. The time-averaged X-ray polarization was determined consistently using the event-by-event Stokes parameter analysis, spectropolarimetric fit, and maximum likelihood methods. We examined the polarization variability over both time and energy, the former via analysis of IXPE data obtained over a time span of 7 months. Results.We detected X-ray polarization of Mrk 421 with a degree of ΠX = 14 ± 1% and an electric-vector position angleψX = 107 ± 3° in the 2–8 keV band. From the time variability analysis, we find a significant episodic variation inψX. During the 7 months from the first IXPE pointing of Mrk 421 in 2022 May,ψXvaried in the range 0° to 180°, while ΠXremained relatively constant within ∼10–15%. Furthermore, a swing inψXin 2022 June was accompanied by simultaneous spectral variations. The results of the multiwavelength polarimetry show that ΠXwas generally ∼2–3 times greater than Π at longer wavelengths, whileψfluctuated. Additionally, based on radio, infrared, and optical polarimetry, we find that the rotation ofψoccurred in the opposite direction with respect to the rotation ofψXand over longer timescales at similar epochs. Conclusions.The polarization behavior observed across multiple wavelengths is consistent with previous IXPE findings for HSP blazars. This result favors the energy-stratified shock model developed to explain variable emission in relativistic jets. We considered two versions of the model, one with linear and the other with radial stratification geometry, to explain the rotation ofψX. The accompanying spectral variation during theψXrotation can be explained by a fluctuation in the physical conditions, for example in the energy distribution of relativistic electrons. The opposite rotation direction ofψbetween the X-ray and longer wavelength polarization accentuates the conclusion that the X-ray emitting region is spatially separated from that at longer wavelengths. Moreover, we identify a highly polarized knot of radio emission moving down the parsec-scale jet during the episode ofψXrotation, although it is unclear whether there is any connection between the two events. 
    more » « less
  4. X-ray polarimetry is a unique way to probe the geometrical configuration of highly magnetized accreting neutron stars (X-ray pulsars). GRO J1008−57 is the first transient X-ray pulsar observed at two different flux levels by the Imaging X-ray Polarimetry Explorer (IXPE) during its outburst in November 2022. We find the polarization properties of GRO J1008−57 to be independent of its luminosity, with the polarization degree varying between nondetection and about 15% over the pulse phase. Fitting the phase-resolved spectro-polarimetric data with the rotating vector model allowed us to estimate the pulsar inclination (130°, which is in good agreement with the orbital inclination), the position angle (75°) of the pulsar spin axis, and the magnetic obliquity (∼74°). This makes GRO J1008−57 the first confidently identified nearly orthogonal rotator among X-ray pulsars. We discuss our results in the context of the neutron star atmosphere models and theories of the axis alignment of accreting pulsars. 
    more » « less
  5. Context. After about 16 years since its first outburst, the transient neutron star low-mass X-ray binary XTE J1701−462 turned on again in September 2022, allowing for the first study of its X-ray polarimetric characteristics by a dedicated observing program with the Imaging X-ray Polarimeter Explorer (IXPE). Aims. Polarimetric studies of XTE J1701−462 have been expected to improve our understanding of accreting weakly magnetized neutron stars, in particular, the physics and the geometry of the hot inner regions close to the compact object. Methods. The IXPE data of two triggered observations were analyzed using time-resolved spectroscopic and polarimetric techniques, following the source along its Z -track of the color–color diagram. Results. During the first pointing on 2022 September 29, an average 2–8 keV polarization degree of (4.6 ± 0.4)% was measured, the highest value found up to now for this class of sources. Conversely, only a ∼0.6% average degree was obtained during the second pointing ten days later. Conclusions. The polarimetric signal appears to be strictly related to the higher energy blackbody component associated with the boundary layer (BL) emission and its reflection from the inner accretion disk, and it is as strong as 6.1% and 1.2% (> 95% significant) above 3–4 keV for the two measurements, respectively. The variable polarimetric signal is apparently related to the spectral characteristics of XTE J1701−462, which is the strongest when the source was in the horizontal branch of its Z -track and the weakest in the normal branch. These IXPE results provide new important observational constraints on the physical models and geometry of the Z -sources. Here, we discuss the possible reasons for the presence of strong and variable polarization among these sources. 
    more » « less
  6. Accreting X-ray pulsars (XRPs) are presumed to be ideal targets for polarization measurements, as their high magnetic field strength is expected to polarize the emission up to a polarization degree of ∼80%. However, such expectations are being challenged by recent observations of XRPs with the Imaging X-ray Polarimeter Explorer (IXPE). Here, we report on the results of yet another XRP, namely, EXO 2030+375, observed with IXPE and contemporarily monitored with Insight-HXMT and SRG/ART-XC. In line with recent results obtained with IXPE for similar sources, an analysis of the EXO 2030+375 data returns a low polarization degree of 0%–3% in the phase-averaged study and a variation in the range of 2%–7% in the phase-resolved study. Using the rotating vector model, we constrained the geometry of the system and obtained a value of ∼60° for the magnetic obliquity. When considering the estimated pulsar inclination of ∼130°, this also indicates that the magnetic axis swings close to the observer’s line of sight. Our joint polarimetric, spectral, and timing analyses hint toward a complex accreting geometry, whereby magnetic multipoles with an asymmetric topology and gravitational light bending significantly affect the behavior of the observed source. 
    more » « less
  7. Abstract Supernova remnants are commonly considered to produce most of the Galactic cosmic rays via diffusive shock acceleration. However, many questions regarding the physical conditions at shock fronts, such as the magnetic-field morphology close to the particle acceleration sites, remain open. Here we report the detection of a localized polarization signal from some synchrotron X-ray emitting regions of Tycho’s supernova remnant made by the Imaging X-ray Polarimetry Explorer. The derived degree of polarization of the X-ray synchrotron emission is 9% ± 2% averaged over the whole remnant, and 12% ± 2% at the rim, higher than the value of polarization of 7%–8% observed in the radio band. In the west region, the degree of polarization is 23% ± 4%. The degree of X-ray polarization in Tycho is higher than for Cassiopeia A, suggesting a more ordered magnetic field or a larger maximum turbulence scale. The measured tangential direction of polarization corresponds to the radial magnetic field, and is consistent with that observed in the radio band. These results are compatible with the expectation of turbulence produced by an anisotropic cascade of a radial magnetic field near the shock, where we derive a magnetic-field amplification factor of 3.4 ± 0.3. The fact that this value is significantly smaller than those expected from acceleration models is indicative of highly anisotropic magnetic-field turbulence, or that the emitting electrons either favor regions of lower turbulence, or accumulate close to where the orientation of the magnetic field is preferentially radially oriented due to hydrodynamical instabilities. 
    more » « less